Written examination TIN174/DIT410, Artificial Intelligence

Thursday 8 June 2017, 13:00-17:00
Examiner: Peter Ljunglöf (tel: 772 1065)

This examination consists of six questions divided into twelve subquestions. A correctly answered subquestion gives you one point, the total number of points is 12 .

Grades: To get grade 3/G/pass you need at least 66% correct, i.e., 8 points.

This is only for students from previous years:
To get Chalmers grade 4 you need at least 10 points.
To get GU grade VG/distinction you need at least 11 points.
To get Chalmers grade 5 you need all 12 points.

Tools: Paper and pencil.
No extra books, papers or calculators.

Notes: Answer every question directly on the question paper, and write your ID number at the top of every paper.

If you have any extra papers with associated calculations, you should hand in them too.
Write legibly, and explain your answers!

http://dilbert.com/strip/2014-07-04

1. A very hungry snail with a very sticky trail [2p]

A snail is hungry and wants to eat the three fruits as soon as possible. However, this particular snail leaves a very sticky trail - if it walks over its own trail it gets stuck. This stickyness only lasts for two turns, which means that the last two squares that the snail visited are sticky and should not be walked over. In the figure below these two squares are denoted by the two dots left of the snail (which means that the snail has been moving right the last two turns). At each turn the snail moves exactly one square up, down, left or right, and it cannot enter (or climb over) any walls (i.e., the black squares), but it has GPS and a map where the walls and the fruits are shown. When it reaches a fruit it eats it immediately (the snail is very hungry).

a) Give a suitable representation of the states in this search problem. Don't forget to specify the domain of each state variable.
You can assume that the maze has size $w \times h$ squares.

b) Give a nontrivial admissible heuristics.
(I.e., the heuristics should not be constant)

2. Generic heuristic search [4p]

Assume we define an evaluation function f for a heuristic search problem as:

$$
f(x)=u \cdot g(x)+w \cdot h(x) \quad[u, w \geq 0]
$$

where $g(x)$ is the cost of the best path found from the start state to state x, and $h(x)$ is a consistent heuristic function that estimates the cost of a path from x to a goal state,
a) What search algorithm do you get when $u=0$ and $w=1$?
b) What search algorithm do you get when $u=1$ and $w=0$?
c) What search algorithm do you get when $u=w=1 / 2$?
d) For which values of u and w will the search algorithm always find the optimal solution?

3. Constraint satisfaction [2p]

Assume that you have three variables, $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C}, all with domains $\{1,2,3,4,5,6\}$. The constraints on the values are that $A<B, B<C$ and $A+C=9$.
a) Draw the constraint graph and write the constraints next to the edges.

3. Constraint satisfaction (continued)

(Recall that the constraints are $\boldsymbol{A}<\boldsymbol{B}, \boldsymbol{B}<\boldsymbol{C}$ and $\boldsymbol{A}+\boldsymbol{C = 9}$, and the domains $\{1,2,3,4,5,6\}$).
b) Perform arc-consistency on the problem, using the table below.

Use $\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C}, \mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{A}$, etc., to denote edges.

Edge removed from queue	Constraint to be checked	Affected variable	Values removed from variable domain (if any)	Edge(s) added to queue (if any)

Variable	Final domain
A	
B	
C	

4. An almost tree-structured CSP [1p]

Assume the following complex constraint graph with 12 variables and 16 binary constraints.

a) Find the smallest cycle cutset* for the constraint graph, and draw the resulting constraint graph, after removing the cycle cutset from the original graph.

[^0]
5. A stochastic game tree [1p]

Assume the stochastic minimax game tree below, where \bigcirc are chance nodes,
\triangle are maximising nodes, and ∇ are minimising nodes. Furthermore,
assume that every chance node has a uniform probability for its actions to occur.
a) Perform the expecti-minimax algorithm on the game tree, and write the resulting values inside the empty nodes.

Which next move is the best move for the maximising player, according to the expecti-minimax algorithm?
\square
ab
\square
they are equally good/bad

6. Nim, or the subtraction game [2p]

Here is a very simplified variant of the game of Nim, called the subtraction game:
The game starts with \boldsymbol{N} stones on a board. The two players, Anna and Bengt, alternate by removing at most \boldsymbol{k} stones from the board ($0<\boldsymbol{k}<\boldsymbol{N}$), i.e., if $\boldsymbol{k}=3$, then a player can remove either 1 or 2 or 3 stones at each turn. Anna makes the first move, and the player who clears the board wins, i.e., the one who makes the final move wins.

When you draw game tree for this game, use \triangle for Anna's and ∇ for Bengt's nodes.
Use the utility +1 for the leaf nodes where Anna wins, and -1 where Bengt wins.
a) Draw a game tree below for the case $N=3$ and $k=2$.

Write 1 or 2 at each edge, to show how many stones the player removes.
b) Perform the minimax algorithm on the game tree.

Write the minimax values inside Anna's and Bengt's nodes.
Which next move is the best first move for Anna, according to minimax?
$\square 1$
2
\square they are equally good/bad

[^0]: * The cycle cutset is the smallest set of variables such that removing those from the constraint graph makes the resulting graph tree-structured.

