
DIT411/TIN175, Artificial Intelligence Chapter 7: Constraint satisfaction problems

CHAPTER 7: CONSTRAINT SATISFACTIONCHAPTER 7: CONSTRAINT SATISFACTION
PROBLEMSPROBLEMS

DIT411/TIN175, Artificial Intelligence

Peter Ljunglöf

30 January, 2018

1

TABLE OF CONTENTSTABLE OF CONTENTS
CSP: Constraint satisfaction problems (R&N 7.1)

Formulating a CSP
Constraint graph

CSP as a search problem (R&N 7.3–7.3.2)
Backtracking search
Heuristics: Improving backtracking efficiency

Constraint propagation (R&N 7.2–7.2.2)
Arc consistency
Maintaining arc-consistency (MAC)

2

CSP: CONSTRAINT SATISFACTIONCSP: CONSTRAINT SATISFACTION
PROBLEMS (R&N 7.1)PROBLEMS (R&N 7.1)

FORMULATING A CSPFORMULATING A CSP

CONSTRAINT GRAPHCONSTRAINT GRAPH

3

CONSTRAINT SATISFACTION PROBLEMS (CSP)CONSTRAINT SATISFACTION PROBLEMS (CSP)

Standard search problem:

the state is a “black box”, any data structure that supports:
goal test, cost evaluation, successor

CSP is a more specific search problem:

the state is defined by variables , taking values from the domain

the goal test is a set of constraints specifying allowable combinations
of values for subsets of variables

Since CSP is more specific, it allows useful algorithms with more power than
standard search algorithms

Xi Di

4

STATES AND VARIABLESSTATES AND VARIABLES
Just a few variables can describe many states:

binary variables can describe states

10 binary variables can describe = 1,024

20 binary variables can describe = 1,048,576

30 binary variables can describe = 1,073,741,824

100 binary variables can describe = 1,267,650,600,228,229,
 401,496,703,205,376

n 2
n

210

220

230

2100

5

HARD AND SOFT CONSTRAINTSHARD AND SOFT CONSTRAINTS

Given a set of variables, assign a value to each variable that either

satisfies some set of constraints:
satisfiability problems — “hard constraints”

or minimizes some cost function,
where each assignment of values to variables has some cost:

optimization problems — “so� constraints” — “preferences”

many problems are a mix of hard constraints and preferences:
constraint optimization problems

In this course we will focus on satisfiability problems

6

RELATIONSHIP TO SEARCHRELATIONSHIP TO SEARCH

Differences between CSP and general search problems:

The path to a goal isn’t important, only the solution is.

There are no predefined starting nodes.

O�en these problems are huge, with thousands of variables,
so systematically searching the space is infeasible.

For optimization problems, there are no well-defined goal nodes.

7

FORMULATING A CSPFORMULATING A CSP

A CSP is characterized by

A set of variables .

Each variable has an associated domain of possible values.

There are hard constraints on various subsets of the variables
which specify legal combinations of values for these variables.

A solution to the CSP is an assignment of a value to each variable
that satisfies all the constraints.

, ,… ,X1 X2 Xn

Xi Di

C ,…,Xi Xj

8

EXAMPLE: SCHEDULING ACTIVITIESEXAMPLE: SCHEDULING ACTIVITIES

Variables: representing starting times of various activities.
(e.g., courses and their study periods)

Domains:

Constraints:

A,B,C,D,E

= = = = = {1, 2, 3, 4}DA DB DC DD DE

(B ≠ 3), (C ≠ 2), (A ≠ B), (B ≠ C), (C < D), (A = D),

(E < A), (E < B), (E < C), (E < D), (B ≠ D)

9

EXAMPLE: CROSSWORD PUZZLEEXAMPLE: CROSSWORD PUZZLE

Words: ant, big, bus,
car, has, book, buys,
hold, lane, year, beast,
ginger, search, symbol,
syntax, …

10

DUAL REPRESENTATIONSDUAL REPRESENTATIONS
Many problems can be represented in different ways as a CSP, e.g., the crossword puzzle:

One representation:
each variable represent one word
the domain is all words in the lexicon
constraints specify that the letters
on the intersections must be the same
5 variables, 5 constraints, ≈ 100,000

Dual representation:
each variable represent an individual square
the domain is the letters in the alphabet
constraints specify that letter combinations must
be in the lexicon
15 variables, 5 constraints, = 26

|D|

|D|

11

EXAMPLE: MAP COLOURINGEXAMPLE: MAP COLOURING

Variables:

Domains:
Constraints: adjacent regions must have different colors, i.e.,

WA,NT,Q,NSW,V, SA, T

= {red, green, blue}Di

WA ≠ NT,WA ≠ SA,NT ≠ SA,NT ≠ Q,…

12

EXAMPLE: MAP COLOURINGEXAMPLE: MAP COLOURING

Solutions are assignments satisfying all constraints, e.g.,
 {WA = red,NT = green,Q = red,NSW = green,

V = red, SA = blue, T = green}

13

CONSTRAINT GRAPHCONSTRAINT GRAPH

Binary CSP: each constraint relates at most two variables
(note: this does not say anything about the domains)

Constraint graph: every variable is a node, every binary constraint is an arc

CSP algorithms can use the graph structure to speed up search,
e.g., Tasmania is an independent subproblem.

14

EXAMPLE: CRYPTARITHMETIC PUZZLEEXAMPLE: CRYPTARITHMETIC PUZZLE

Variables:

Domains:

Constraints: , , etc.
Note: This is not a binary CSP!

The graph is a constraint hypergraph

F, T,U,W,R,O, , ,X1 X2 X3

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Alldiff(F, T,U,W,R,O) O + O = R + 10 ⋅ X1

15

EXAMPLE: SUDOKUEXAMPLE: SUDOKU

Variables:

Domains:

Constraints: , …, , …, , …,
, …, , …,

… , ,… , ,… ,A1 A9 B1 E5 I9

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Alldiff(,… ,)A1 A9 Alldiff(,… ,)A5 I5 Alldiff(,… ,)D1 F3

= 9B1 = 8F6 = 3I7

16

EXAMPLE: N-QUEENSEXAMPLE: N-QUEENS

Variables:

Domains:

Constraints: ,
 ()

, ,… ,Q1 Q2 Qn

{1, 2, 3,… , n}

Alldiff(, ,… ,)Q1 Q2 Qn

− ≠ |i − j|Qi Qj 1 ≤ i < j ≤ n

17

CSP VARIETIESCSP VARIETIES
Discrete variables, finite domains:

 variables, domain size complete assignments
this is what we discuss in this course

Discrete variables, infinite domains (integers, strings, etc.)

e.g., job scheduling — variables are start/end times for each job
we need a constraint language for formulating the constraints
(e.g.,)
linear constraints are solvable — nonlinear are undecidable

Continuous variables:

e.g., scheduling for Hubble Telescope observations and manouvers
linear constraints (linear programming) — solvable in polynomial time!

n d ⇒ O()dn

+ ≤T1 d1 T2

18

DIFFERENT KINDS OF CONSTRAINTSDIFFERENT KINDS OF CONSTRAINTS
Unary constraints involve a single variable:

e.g.,

Binary constraints involve pairs of variables:

e.g.,

Global constraints (or higher-order) involve 3 or more variables:

e.g.,
all global constraints can be reduced to a number of binary constraints
(but this might lead to an explosion of the number of constraints)

Preferences (or so� constraints):

“constraint optimization problems”
o�en representable by a cost for each variable assignment
not discussed in this course

SA ≠ green

SA ≠ WA

Alldiff(WA,NT, SA)

19

CSP AS A SEARCH PROBLEMCSP AS A SEARCH PROBLEM
(R&N 7.3–7.3.2)(R&N 7.3–7.3.2)

BACKTRACKING SEARCHBACKTRACKING SEARCH

HEURISTICS: IMPROVING BACKTRACKING EFFICIENCYHEURISTICS: IMPROVING BACKTRACKING EFFICIENCY

20

GENERATE-AND-TEST ALGORITHMGENERATE-AND-TEST ALGORITHM

Generate the assignment space
Test each assignment with the constraints.

Example:

=

 =

 =

How many assignments need to be tested for variables,
each with domain size ?

D = × ×⋯ ×DV1
DV2

DVn

D × × × ×DA DB DC DD DE

{1, 2, 3, 4} ×⋯ × {1, 2, 3, 4}

{(1, 1, 1, 1, 1), (1, 1, 1, 1, 2),… , (4, 4, 4, 4, 4)}

n

d = | |Di

21

CSP AS A SEARCH PROBLEMCSP AS A SEARCH PROBLEM

Let’s start with the straightforward, dumb approach.
(But still not as stupid as generate-and-test…)

States are defined by the values assigned so far:
Initial state: the empty assignment, { }
Successor function: assign a value to an unassigned variable
that does not conflict with current assignment

 fail if there are no legal assignments
Goal test: the current assignment is complete

Every solution appears at depth (assuming variables)
 we can use depth-first-search, no risk for infinite loops

At search depth , the branching factor is , (where
is the domain size and is the number of unassigned variables)

 hence there are leaves

⟹

n n

⟹

k b = (n − k)d d = | |Di

n − k

⟹ n!dn

22

BACKTRACKING SEARCHBACKTRACKING SEARCH

Variable assignments are commutative:

 is the same as

It’s unnecessary work to assign followed by in one branch,
and followed by in another branch.

Instead, at each depth level, we can decide on one single variable to assign:

this gives branching factor , so there are leaves (instead of)

Depth-first search with single-variable assignments is called backtracking search:

backtracking search is the basic uninformed CSP algorithm
it can solve -queens for

Why not use breadth-first search?

{WA = red,NT = green} {NT = green,WA = red}

WA NT

NT WA

b = d dn n!dn

n n ≈ 25

23

SIMPLE BACKTRACKING EXAMPLESIMPLE BACKTRACKING EXAMPLE

Variables:

Domains:

Constraints:

A,B,C

= = = {1, 2, 3, 4}DA DB DC

(A < B), (B < C)

24

EXAMPLE: AUSTRALIA MAP COLOURSEXAMPLE: AUSTRALIA MAP COLOURS

Assign variable: Q (Queensland)

25

ALGORITHM FOR BACKTRACKING SEARCHALGORITHM FOR BACKTRACKING SEARCH

function BacktrackingSearch(csp):
return Backtrack(csp, { })

function Backtrack(csp, assignment):

if assignment is complete then return assignment
var := SelectUnassignedVariable(csp, assignment)
for each value in OrderDomainValues(csp, var, assignment):

if value is consistent with assignment:
inferences := Inference(csp, var, value)
if inferences ≠ failure:

result := Backtrack(csp, assignment {var=value} inferences)
if result ≠ failure then return result

return failure

∪ ∪

26

HEURISTICS: IMPROVING BACKTRACKING EFFICIENCYHEURISTICS: IMPROVING BACKTRACKING EFFICIENCY

The general-purpose algorithm gives rise to several questions:

Which variable should be assigned next?
SelectUnassignedVariable(csp, assignment)

In what order should its values be tried?
OrderDomainValues(csp, var, assignment)

What inferences should be performed at each step?
Inference(csp, var, value)

Can the search avoid repeating failures?
Conflict-directed backjumping, constraint learning, no-good sets
(R&N 7.3.3, not covered in this course)

27

SELECTING UNASSIGNED VARIABLESSELECTING UNASSIGNED VARIABLES

Heuristics for selecting the next unassigned variable:

Minimum remaining values (MRV):
 choose the variable with the fewest legal values

Degree heuristic (if there are several MRV variables):
 choose the variable with most constraints on remaining variables

⟹

⟹

28

ORDERING DOMAIN VALUESORDERING DOMAIN VALUES

Heuristics for ordering the values of a selected variable:

Least constraining value:
 prefer the value that rules out the fewest choices for the neighboring

variables in the constraint graph
⟹

29

INFERENCE: FORWARD CHECKINGINFERENCE: FORWARD CHECKING
Forward checking is a simple form of inference:

Keep track of remaining legal values for unassigned variables
— terminate when any variable has no legal values le�
When a new variable is assigned, recalculate the legal values for its neighbors

l bl d b bl
30

INFERENCE: CONSTRAINT PROPAGATIONINFERENCE: CONSTRAINT PROPAGATION

Forward checking propagates information from assigned to
unassigned variables, but doesn’t detect all failures early:

NT and SA cannot both be blue, but forward checking doesn’t notice that!

Forward checking enforces local constraints
Constraint propagation enforces local constraints,
repeatedly until reaching a fixed point

31

CONSTRAINT PROPAGATIONCONSTRAINT PROPAGATION
(R&N 7.2–7.2.2)(R&N 7.2–7.2.2)
ARC CONSISTENCYARC CONSISTENCY

MAINTAINING ARC CONSISTENCYMAINTAINING ARC CONSISTENCY

32

CONSTRAINT PROPAGATION: ARC CONSISTENCYCONSTRAINT PROPAGATION: ARC CONSISTENCY

The simplest form of propagation is to make the graph arc consistent:

 is arc consistent iff:
for every value of , there is some allowed value in

If loses a value, neighbors of need to be rechecked
i.e., the arc SA NSW must be rechecked

Arc consistency detects failure earlier than forward checking

X → Y

x X y Y

X X

→

33

CONSISTENCYCONSISTENCY

Different variants of constistency:

A variable is node-consistent if all values in its domain satisfy
its own unary constraints

a variable is arc-consistent if every value in its domain satisfies
the variable’s binary constraints

Generalised arc-consistency is the same, but for -ary constraints

Path consistency is arc-consistency, but for 3 variables at the same time

-consistency is arc-consistency, but for variables

…and there are consistency checks for several global constraints,
such as or

A graph is -consistent if every variable is -consistent with every other variable.

n

k k

Alldiff Atmost

X X

34

SCHEDULING EXAMPLE (AGAIN)SCHEDULING EXAMPLE (AGAIN)

Variables: representing starting times of various activities.

Domains:

Constraints:

Is this example node consistent?

 is not node consistent,
since violates the constraint

 reduce the domain

 is not node consistent,
since violates the constraint

 reduce the domain

A,B,C,D,E

= = = = = {1, 2, 3, 4}DA DB DC DD DE

(B ≠ 3), (C ≠ 2), (A ≠ B), (B ≠ C), (C < D), (A = D),

(E < A), (E < B), (E < C), (E < D), (B ≠ D)

= {1, 2, 3, 4}DB

B = 3 B ≠ 3

⟹ = {1, 2, 4}DB

= {1, 2, 3, 4}DC

C = 2 C ≠ 2

⟹ = {1, 3, 4}DC

35

SCHEDULING EXAMPLE AS A CONSTRAINT GRAPHSCHEDULING EXAMPLE AS A CONSTRAINT GRAPH
If we reduce the domains for and , then the constraint graph is node consistent.B C

36

ARC CONSISTENCYARC CONSISTENCY
A variable is binary arc-consistent with respect to another variable if:

For each value , there is some
such that the binary constraint is satisfied.

A variable is generalised arc-consistent with respect to variables if:

For each value , there is some assignment such
that is satisfied.

What if is not arc consistent to ?

All values for which there is no corresponding
can be deleted from to make arc consistent.

Note! The arcs in a constraint graph are directed:

 and are considered as two different arcs,
i.e., can be arc consistent to , but not arc consistent to .

X Y

x ∈ DX y ∈ DY

(x, y)CXY

X (Y, Z,…)

x ∈ DX y, z,⋯ ∈ , ,…DY DZ

(x, y, z,…)CXYZ…

X Y

x ∈ DX y ∈ DY

DX X

(X, Y) (Y,X)

X Y Y X

37

ARC CONSISTENCY ALGORITHMARC CONSISTENCY ALGORITHM

Keep a set of arcs to be considered: pick one arc at the time and
make it consistent (i.e., make arc consistent to).

Start with the set of all arcs .

When an arc has been made arc consistent, does it ever need to be checked again?

An arc needs to be revisited if the domain of is changed.

Three possible outcomes when all arcs are made arc consistent:
(Is there a solution?)

One domain is empty no solution
Each domain has a single value unique solution
Some domains have more than one value maybe a solution, maybe not

(X, Y)

X Y

{(X, Y), (Y,X), (X, Z), (Z,X),…}

(Z,X) X

⟹

⟹

⟹

38

QUIZ: ARC CONSISTENCYQUIZ: ARC CONSISTENCY

The variables and constraints are in the constraint graph:

Assume the initial domains are

How will the domains look like a�er making the graph arc consistent?

= = = {1, 2, 3, 4}DA DB DC

39

THE ARC CONSISTENCY ALGORITHM AC-3THE ARC CONSISTENCY ALGORITHM AC-3

function AC-3(inout csp):
initialise queue to all arcs in csp
while queue is not empty:

(X, Y) := RemoveOne(queue)
if Revise(csp, X, Y):

if then return false
for each Z in X.neighbors–{Y}:

add (Z, X) to queue
return true

function Revise(inout csp, X, Y):

revised := false
for each x in :

if there is no value y in satisfying the csp constraint :
delete x from
revised := true

return revised

Note: This algorithm destructively updates the domains of the CSP!
You might need to copy the CSP before calling AC-3.

= ∅DX

DX

DY (x, y)CXY

DX

40

MAINTAINING ARC-CONSISTENCY (MAC)MAINTAINING ARC-CONSISTENCY (MAC)

What if some domains have more than one element a�er AC?

We can always resort to backtracking search:

Select a variable and a value using some heuristics
(e.g., minimum-remaining-values, degree-heuristic, least-constraining-value)
Make the graph arc-consistent again
Backtrack and try new values/variables, if AC fails
Select a new variable/value, perform arc-consistency, etc.

Do we need to restart AC from scratch?

no, only some arcs risk becoming inconsistent a�er a new assignment
restart AC with the queue ,
i.e., only the arcs where are the neighbors of
this algorithm is called Maintaining Arc Consistency (MAC)

{(,X)|X → }Yi Yi
(,X)Yi Yi X

41

DOMAIN SPLITTING (NOT IN R&N)DOMAIN SPLITTING (NOT IN R&N)

What if some domains are very big?

Instead of assigning every possible value to a variable, we can split its domain

Split one of the domains, then recursively solve each half, i.e.:

perform AC on the resulting graph, then split a domain,
perform AC, split a domain, perform AC, split, etc.

It is o�en good to split a domain in half, i.e.:

if , split into and = {1,… , 1000}DX {1,… 500} {501,… , 1000}

42

