CHAPTERS 4-5: NON-CLASSICAL AND
ADVERSARIAL SEARCH

DIT411/TIN175, Artificial Intelligence
Peter Ljunglof

2 February, 2018

TABLE OF CONTENTS

Repetition
e Uninformed search (R&N 3.4)
e Heuristic search (R&N 3.5-3.6)
e Local search (R&N 4.1)

Non-classical search
e Nondeterministic search (R&N 4.3)
o Partial observations (R&N 4.4)

Adversarial search
e Types of games (R&N 5.1)
e Minimax search (R&N 5.2-5.3)
e Imperfect decisions (R&N 5.4-5.4.2)
e Stochastic games (R&N 5.5)

REPETITION
UNINFORMED SEARCH (R&N 3.4)

Search problems, graphs, states, arcs, goal test, generic search algorithm,
tree search, graph search, depth-first search, breadth-first search,
uniform cost search, iterative deepending, bidirectional search, ...

HEURISTIC SEARCH (R&N 3.5-3.6)

Greedy best-first search, A* search, heuristics, admissibility, consistency,
dominating heuristics, ...

LOCAL SEARCH (R&N 4.1)

Hill climbing / gradient descent, random moves, random restarts, beam search,
simulated annealing, ...

NON-CLASSICAL SEARCH

NONDETERMINISTIC SEARCH (R&N 4.3)
PARTIAL OBSERVATIONS (R&N 4.4)

NONDETERMINISTIC SEARCH (R&N 4.3)

e Contingency plan / strategy
e And-or search trees (not in the written exam)

AN ERRATIC VACUUM CLEANER

L =4 2 =]
BB | 8% 5B 0B
; |=Ad 4 =]
o3 o3
s | =4 & =]
o5 o3
7 |=4 3 =]

The eight possible states of the vacuum world; states 7 and 8 are goal states.

There are three actions: Left, Right, Suck.
Assume that the Suck action works as follows:

e ifthe squareisdirty, itis cleaned but sometimes also the adjacent square is
e if the squareis clean, the vacuum cleaner sometimes deposists dirt

NONDETERMINISTIC OUTCOMES, CONTINGENCY PLANS

Assume that the Suck action is nondeterministic:
e if the squareisdirty, itis cleaned but sometimes also the adjacent square is

e ifthe square is clean, the vacuum cleaner sometimes deposists dirt

Now we need a more general result function:
e instead of returning a single state, it returns a set of possible outcome states

e e.g.,Results(Suck, 1) = {5,7} and Results(Suck, 5) = {1, 5}

We also need to generalise the notion of a solution:
e instead of a single sequence (path) from the start to the goal,
we need a strategy (or a contingency plan)
e ji.e., we need if-then-else constructs
e thisis a possible solution from state 1:
o [Suck, if State=5 then [Right, Suck] else []]

HOW TO FIND CONTINGENCY PLANS

(will not be in the written examination)

We need a new kind of nodes in the search tree:
e and nodes:
these are used whenever an action is nondeterministic
e normal nodes are called or nodes:
they are used when we have several possible actions in a state

A solution for an and-or search problem is a subtree that:
e hasagoal node at every leaf
e specifies exactly one action at each of its or node
e includes every branch at each of its and node

A SOLUTION TO THE ERRATIC VACUUM CLEANER

(will not be in the written examination)

] [Fla] o[F] [l o[[o[s]A

LOOP Loop St Lt roop GOAL

7

A Fa

GOAL LOOP

The solution subtree is shown in bold, and corresponds to the plan:
[Suck, if State=5 then [Right, Suck] else []]

AN ALGORITHM FOR FINDING A CONTINGENCY PLAN

(will not be in the written examination)

This algorithm does a depth-first search in the and-or tree,
so it is not guaranteed to find the best or shortest plan:

function AndOrGraphSearch(problem):
return OrSearch(problem.InitialState, problem, [])

function OrSearch(state, problem, path):
if problem.GoalTest(state) then return []
if state is on path then return failure
for each action in problem.Actions(state):
plan := AndSearch(problem.Results(state, action), problem, [state] ++ path)
if plan = failure then return [action] ++ plan
return failure

function AndSearch(states, problem, path):
for each s; in states:
plan; .= OrSearch(s;, problem, path)
if plan; = failure then return failure
return [if 5| then plan, else if s, then plan; else ... if s, then plan,,]

WHILE LOOPS IN CONTINGENCY PLANS

(will not be in the written examination)

Suck Right

3
o

If the search graph contains cycles, if-then-else is not enough in a contingency plan:
e we need while loops instead

In the slippery vacuum world above, the cleaner don’t always move when told:
e the solution above translates to [Suck, while State=5 do Right, Suck]

PARTIAL OBSERVATIONS (R&N 4.4)

o Belief states: goal test, transitions, ...
e Sensor-less (conformant) problems
e Partially observable problems

OBSERVABILITY VS DETERMINISM

A problem is nondeterministic if there are several possible outcomes of an action
e deterministic — nondeterministic (chance)

It is partially observable if the agent cannot tell exactly which state itis in
 fully observable (perfect info.) — partially observable (imperfect info.)

A problem can be either nondeterministic, or partially observable, or both:

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

BELIEF STATES

Instead of searching in a graph of states, we use belief states
e Abelief stateis a set of states

In a sensor-less (or conformant) problem, the agent has no information at all
e Theinitial belief state is the set of all problem states
o e.g., for the vacuum world the initial state is {1,2,3,4,5,6,7,8}

The goal test has to check that all members in the belief state is a goal
e e.g., forthe vacuum world, the following are goal states: {7}, {8}, and {7,8}

The result of performing an action is the union of all possible results
e i.e., Predict(b,a) = {Result(s, a) foreachs € b}
e ifthe problem is also nondeterministic:
o Predict(b,a) = | J{Results(s, a) foreach s € b}

PREDICTING BELIEF STATES IN THE VACUUM WORLD

() (b)

(a) Predicting the next belief state for the sensorless vacuum world
with a deterministic action, Right.

(b) Prediction for the same belief state and action in the nondeterministic
slippery version of the sensorless vacuum world.

THE DETERMINISTIC SENSORLESS VACUUM WORLD

=) =))
1o o 3§Q ! & Q@sgg 35@ 2%@34%5@
L R
=) = { =)
5 o | 7 4@,:{1‘,3 54@ 6 :;;Q a ,foﬁ'
2 [=2 a| |4
rS
4-@:&5;&3%
S S
7 |[=# 8 =)
L lR
i L [
5;@@ S Sdgeas 3@& . ﬁﬂ'%dﬂ S 4@3:@
B e o
7 =& 7|=4 .8 =) 8 =)
| R |
Rl |L Ll |R
= L =)
6 3
=S Ll [[l e Tl
8 Eﬁ R ?.hfﬁ

PARTIAL OBSERVATIONS: STATE TRANSITIONS

With partial observations, we can think of belief state transitions in three stages:
e Prediction, the same as for sensorless problems:

o b’ = Predict(b, a) = {Result(s, a) foreachs € b}

e Observation prediction, determines the percepts that can be observed:
o PossiblePercepts(b’) = {Percept(s) foreachs € b’}

* Update, filters the predicted states according to the percepts:
o Update(d’, 0) = {sforeachs € b’ suchthato = Percept(s)}

Belief state transitions:
e Results(b,a) = {Update(d’, 0) for each o € PossiblePercepts(d’)}

where b’ = Predict(b, a)

TRANSITIONS IN PARTIALLY OBSERVABLE VACUUM WORLDS

The percepts return the current position and the dirtyness of that square.

5.0 (2] = |5 The deterministic world:
(a) Right always succeeds.
[B.Clean] |4 -]
2| ax f:;g ' .
(B.Dirty) The slippery world:

Right sometimes fails.

5 : ADH!}I@
(b A =
3|

| B, Clean)|

EXAMPLE: ROBOT LOCALISATION

The percepts return whether there is a wall in each of the directions.

Possible initial positions of the robot, after E7 = North, South, West.

ARENEREREYRERE
After moving right and observing E> = North, South,
there’s only one possible position left.

ADVERSARIAL SEARCH

TYPES OF GAMES (R&N 5.1)
MINIMAX SEARCH (R&N 5.2-5.3)
IMPERFECT DECISIONS (R&N 5.4-5.4.2)
STOCHASTIC GAMES (R&N 5.5)

TYPES OF GAMES (R&N 5.1)

e cooperative, competetive, zero-sum games
e game trees, ply/plies, utility functions

MULTIPLE AGENTS

Let’s consider problems with multiple agents, where:

e the agents select actions autonomously

e each agent has its own information state
o they can have different information (even conflicting)

e the outcome depends on the actions of all agents

e each agent has its own utility function (that depends on the total outcome)

TYPES OF AGENTS

There are two extremes of multiagent systems:

e Cooperative: The agents share the same utility function
o Example: Automatic trucks in a warehouse
e Competetive: When one agent wins all other agents lose
o A common special case is when Za u,(0) = 0 for any outcome o.

This is called a zero-sum game.
o Example: Most board games

Many multiagent systems are between these two extremes.

e Example: Long-distance bike races are usually both cooperative
(bikers form clusters where they take turns in leading a group),
and competetive (only one of them can win in the end).

GAMES AS SEARCH PROBLEMS

The main difference to chapters 3-4:
now we have more than one agent that have different goals.

e All possible game sequences are represented in a game tree.

The nodes are states of the game, e.g. board positions in chess.

Initial state (root) and terminal nodes (leaves).

States are connected if there is a legal move/ply.
(a ply is @ move by one player, i.e., one layer in the game tree)

Utility function (payoff function). Terminal nodes have utility values
+x (player 1 wins), —x (player 2 wins) and O (draw).

TYPES OF GAMES (AGAIN)

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

PERFECT INFORMATION GAMES: ZERO-SUM GAMES

Perfect information games are solvable in a manner similar to
fully observable single-agent systems, e.g., using forward search.

If two agents compete, so that a positive reward for one is a negative reward
for the other agent, we have a two-agent zero-sum game.

The value of a game zero-sum game can be characterised by a single number that
one agent is trying to maximise and the other agent is trying to minimise.

This leads to a minimax strategy:

e Anodeis either a MAX node (if it is controlled by the maximising agent),
e orisaMIN node (if itis controlled by the minimising agent).

MINIMAX SEARCH (R&N 5.2-5.3)

e Minimax algorithm
e a-f pruning

MINIMAX SEARCH FOR ZERO-SUM GAMES

Given two players called MAX and MIN:
e MAX wants to maximise the utility value,
e MIN wants to minimise the same value.

= MAX should choose the alternative that maximises, assuming MIN minimises.

Minimax gives perfect play for deterministic, perfect-information games:

function Minimax(state):
if TerminalTest(state) then return Utility(state)
A := Actions(state)
if state is a MAX node then return max,c4 Minimax(Result(state, a))
if state is a MIN node then return min,c4 Minimax(Result(state, a))

MINIMAX SEARCH: TIC-TAC-TOE

MAX (X)
X X X
MIN (O) X X X
X
X[0 X[[0] [X
MAX (X) 0
X[O[X] [X[O X0
MIN (O) X X
X[O[X] [X[O[X] [X[O[X
TERMINAL O[X| [O[O[X X
0 X[X[0| [X[O[O
Utility -1 0 +1

MINIMAX EXAMPLE

The Minimax algorithm gives perfect play for deterministic, perfect-information games.

MAX /\ °
A : A
1 2 3
7 2
MIN WV \/
A11 A1E A13 A31 ABE AB

CAN MINIMAX BE WRONG?

Minimax gives perfect play, but is that always the best strategy?

MAX /\

MIN \/ 99 \/ 100

AN\ NANS/AN JANEYAN

99 1000 1000 1000 100 101 102 100

Perfect play assumes that the opponent is also a perfect player!

3-PLAYER MINIMAX

(will not be in the written examination)

Minimax can also be used on multiplayer games

to move
A (1,2,6

C (1,2,6) (6,1,2) (-1,5,2)

(1,2,6) (4,2,3) (6,1,2) (7,4-1) (5~-1,-1)

(-1,5,2)

(5,4,5)

(_1353 2) (73 7&_1)

(5,4,5)

o—fp PRUNING

MAX

MIN

Minimax(root) = max(min(3,12,8), min(2,x,y), min(14,3,2))
= max(3, min(2, x,y),2)
= max(3,z,2) where z=min(2,x,y) < 2
= 3
l.e., we don’t need to know the values of x and y!

o—[3 PRUNING, GENERAL IDEA

The general idea of a-f3 pruning is this:
« if m is better than n for Player,

Player ,
we don’t want to pursue n
* S0, once we know enough about n
Opponent .
we can prune it
« sometimes it’s enough to examine
just one of n’s descendants
Player
Opponent a- pruning keeps track of the possible

range of values for every node it visits;
the parent range is updated when the child has been visited.

MINIMAX EXAMPLE, WITH ot—f3 PRUNING

THE at—f3 ALGORITHM

" function AlphaBetaSearch(state):
v := MaxValue(state, —oco, +0))
return the action in Actions(state) that has value v

function MaxValue(state, a, B):

if TerminalTest(state) then return Utility(state)

Vi=—00

for each action in Actions(state):
v := max(v, MinValue(Result(state, action), a, B))
if v > § then return v
a = max(a, v)

return v

function MinValue(state, o, B):
same as MaxValue but reverse the roles of a/f and min/max and —oco/+o0

HOW EFFICIENT IS x— 3 PRUNING?

The amount of pruning provided by the a-3 algorithm depends on the ordering of
the children of each node.

e |t works best if a highest-valued child of a MAX node is selected first and
if a lowest-valued child of a MIN node is selected first.

 |nreal games, much of the effort is made to optimise the search order.

o With a “perfect ordering”, the time complexity becomes O(b"™?)

o this doubles the solvable search depth
o however, 3552 (for chess) or 250192 (for go) is still quite large...

MINIMAX AND REAL GAMES

Most real games are too big to carry out minimax search, even with a-3 pruning,

e Forthese games, instead of stopping at leaf nodes,
we have to use a cutoff test to decide when to stop.

e The value returned at the node where the algorithm stops
is an estimate of the value for this node.

e The function used to estimate the value is an evaluation function.
e Much work goes into finding good evaluation functions.

e There is a trade-off between the amount of computation required
to compute the evaluation function and the size of the search space
that can be explored in any given time.

IMPERFECT DECISIONS (R&N 5.4-5.4.2)

H-minimax algorithm

evaluation function, cutoff test
features, weighted linear function
quiescence search, horizon effect

H-MINIMAX ALGORITHM

The Heuristic Minimax algorithm is similar to normal Minimax
e itreplaces TerminalTest with CutoffTest, and Utility with Eval
e the cutoff test needs to know the current search depth

function H-Minimax(state, depth):
if CutoffTest(state, depth) then return Eval(state)
A = Actions(state)
if state is a MAX node then return max,c4 H-Minimax(Result(state, a), depth+1)
if state is a MIN node then return min,e4 H-Minimax(Result(state, a), depth+1)

CHESS POSITIONS: HOW TO EVALUATE

{a) White to move {b) Black to move
Fairly even White slightly better

() White to move (d) Black to move
Black winning White about to lose

WEIGHTED LINEAR EVALUATION FUNCTIONS

A very common evaluation function is to use a weighted sum of features:

Eval(s) = wifi(s) + wafa(s) + -+ + Wafu(s) =) wifi(s)
i=1

This relies on a strong assumption: all features are independent of each other
e whichis usually not true, so the best programs for chess
(and other games) also use nonlinear feature combinations

The weights can be calculated using machine learning algorithms,
but a human still has to come up with the features.
e using recent advances in deep machine learning,
the computer can learn the features too

EVALUATION FUNCTIONS

(a) White to move (b) White to move

A naive weighted sum of features will not see the difference between these two states.

PROBLEMS WITH CUTOFF TESTS

Too simplistic cutoff tests and evaluation functions can be problematic:
e e.g., if the cutoffis only based on the current depth
e then it might cut off the search in unfortunate positions
(such as (b) on the previous slide)

We want more sophisticated cutoff tests:
e only cut off search in quiescent positions
e i.e., in positions that are “stable”, unlikely to exhibit wild swings in value
e non-quiescent positions should be expanded further

Another problem is the horizon effect:
 if a bad position is unavoidable (e.g., loss of a piece), but the system can
delay it from happening, it might push the bad position “over the horizon”
e inthe end, theresulting delayed position might be even worse

DETERMINISTIC GAMES IN PRACTICE

Chess:
e |IBM DeepBlue beats world champion Garry Kasparov, 1997.
e Google AlphaZero beats best chess program Stockfish, December 2017.

Checkers/Othello/Reversi:
e Logistello beats the world champion in Othello/Reversi, 1997.
e Chinook plays checkers perfectly, 2007. It uses an endgame database
defining perfect play for all 8-piece positions on the board,
(a total of 443,748,401,247 positions).

Go:
e First Go programs to reach low dan-levels, 20009.
e Google AlphaGo beats the world’s best Go player, Ke Jie, May 2017.
e Google AlphaZero beats AlphaGo, December 2017.
o AlphaZero learns board game strategies by playing itself, it does not use
a database of previous matches, opening books or endgame tables.

STOCHASTIC GAMES (R&N 5.5)

Note: this section will be presented Tuesday 6th February!

[8%)) GOTEBORGS UNIVERSITET

