
DIT411/TIN175, Artificial Intelligence Chapters 4–5: Non-classical and adversarial search

CHAPTERS 4–5: NON-CLASSICAL ANDCHAPTERS 4–5: NON-CLASSICAL AND
ADVERSARIAL SEARCHADVERSARIAL SEARCH

DIT411/TIN175, Artificial Intelligence

Peter Ljunglöf

2 February, 2018

1

TABLE OF CONTENTSTABLE OF CONTENTS
Repetition

Uninformed search (R&N 3.4)
Heuristic search (R&N 3.5–3.6)
Local search (R&N 4.1)

Non-classical search
Nondeterministic search (R&N 4.3)
Partial observations (R&N 4.4)

Adversarial search
Types of games (R&N 5.1)
Minimax search (R&N 5.2–5.3)
Imperfect decisions (R&N 5.4–5.4.2)
Stochastic games (R&N 5.5)

2

REPETITIONREPETITION
UNINFORMED SEARCH (R&N 3.4)UNINFORMED SEARCH (R&N 3.4)

Search problems, graphs, states, arcs, goal test, generic search algorithm,
tree search, graph search, depth-first search, breadth-first search,
uniform cost search, iterative deepending, bidirectional search, …

HEURISTIC SEARCH (R&N 3.5–3.6)HEURISTIC SEARCH (R&N 3.5–3.6)
Greedy best-first search, A* search, heuristics, admissibility, consistency,
dominating heuristics, …

LOCAL SEARCH (R&N 4.1)LOCAL SEARCH (R&N 4.1)
Hill climbing / gradient descent, random moves, random restarts, beam search,
simulated annealing, …

3

NON-CLASSICAL SEARCHNON-CLASSICAL SEARCH
NONDETERMINISTIC SEARCH (R&N 4.3)NONDETERMINISTIC SEARCH (R&N 4.3)

PARTIAL OBSERVATIONS (R&N 4.4)PARTIAL OBSERVATIONS (R&N 4.4)

4

NONDETERMINISTIC SEARCH (R&N 4.3)NONDETERMINISTIC SEARCH (R&N 4.3)
Contingency plan / strategy
And-or search trees (not in the written exam)

5

AN ERRATIC VACUUM CLEANERAN ERRATIC VACUUM CLEANER

The eight possible states of the vacuum world; states 7 and 8 are goal states.

There are three actions: Le�, Right, Suck.
Assume that the Suck action works as follows:

if the square is dirty, it is cleaned but sometimes also the adjacent square is
if the square is clean, the vacuum cleaner sometimes deposists dirt

6

NONDETERMINISTIC OUTCOMES, CONTINGENCY PLANSNONDETERMINISTIC OUTCOMES, CONTINGENCY PLANS
Assume that the Suck action is nondeterministic:

if the square is dirty, it is cleaned but sometimes also the adjacent square is
if the square is clean, the vacuum cleaner sometimes deposists dirt

Now we need a more general result function:

instead of returning a single state, it returns a set of possible outcome states
e.g., and

We also need to generalise the notion of a solution:

instead of a single sequence (path) from the start to the goal,
we need a strategy (or a contingency plan)
i.e., we need if-then-else constructs
this is a possible solution from state 1:

[Suck, if State=5 then [Right, Suck] else []]

�������(����, 1) = {5, 7} �������(����, 5) = {1, 5}

7

HOW TO FIND CONTINGENCY PLANSHOW TO FIND CONTINGENCY PLANS
(will not be in the written examination)

We need a new kind of nodes in the search tree:
and nodes:
these are used whenever an action is nondeterministic
normal nodes are called or nodes:
they are used when we have several possible actions in a state

A solution for an and-or search problem is a subtree that:

has a goal node at every leaf
specifies exactly one action at each of its or node
includes every branch at each of its and node

8

A SOLUTION TO THE ERRATIC VACUUM CLEANERA SOLUTION TO THE ERRATIC VACUUM CLEANER
(will not be in the written examination)

The solution subtree is shown in bold, and corresponds to the plan:
[Suck, if State=5 then [Right, Suck] else []]

9

AN ALGORITHM FOR FINDING A CONTINGENCY PLANAN ALGORITHM FOR FINDING A CONTINGENCY PLAN
(will not be in the written examination)

This algorithm does a depth-first search in the and-or tree,
so it is not guaranteed to find the best or shortest plan:

function AndOrGraphSearch(problem):
return OrSearch(problem.InitialState, problem, [])

function OrSearch(state, problem, path):

if problem.GoalTest(state) then return []
if state is on path then return failure
for each action in problem.Actions(state):

plan := AndSearch(problem.Results(state, action), problem, [state] ++ path)
if plan ≠ failure then return [action] ++ plan

return failure

function AndSearch(states, problem, path):

for each in states:
 := OrSearch(, problem, path)

if = failure then return failure
return [if then else if then else … if then]

si
plani si

plani

s1 plan1 s2 plan2 sn plann

10

WHILE LOOPS IN CONTINGENCY PLANSWHILE LOOPS IN CONTINGENCY PLANS
(will not be in the written examination)

If the search graph contains cycles, if-then-else is not enough in a contingency plan:
we need while loops instead

In the slippery vacuum world above, the cleaner don’t always move when told:

the solution above translates to [Suck, while State=5 do Right, Suck]

11

PARTIAL OBSERVATIONS (R&N 4.4)PARTIAL OBSERVATIONS (R&N 4.4)
Belief states: goal test, transitions, …
Sensor-less (conformant) problems
Partially observable problems

12

OBSERVABILITY VS DETERMINISMOBSERVABILITY VS DETERMINISM
A problem is nondeterministic if there are several possible outcomes of an action

deterministic — nondeterministic (chance)

It is partially observable if the agent cannot tell exactly which state it is in

fully observable (perfect info.) — partially observable (imperfect info.)

A problem can be either nondeterministic, or partially observable, or both:

13

BELIEF STATESBELIEF STATES
Instead of searching in a graph of states, we use belief states

A belief state is a set of states

In a sensor-less (or conformant) problem, the agent has no information at all

The initial belief state is the set of all problem states
e.g., for the vacuum world the initial state is {1,2,3,4,5,6,7,8}

The goal test has to check that all members in the belief state is a goal

e.g., for the vacuum world, the following are goal states: {7}, {8}, and {7,8}

The result of performing an action is the union of all possible results

i.e., for each
if the problem is also nondeterministic:

 for each

�������(b, a) = {������(s, a) s ∈ b}

�������(b, a) = ⋃{�������(s, a) s ∈ b}

14

PREDICTING BELIEF STATES IN THE VACUUM WORLDPREDICTING BELIEF STATES IN THE VACUUM WORLD

(a) Predicting the next belief state for the sensorless vacuum world
with a deterministic action, Right.

(b) Prediction for the same belief state and action in the nondeterministic
slippery version of the sensorless vacuum world.

15

THE DETERMINISTIC SENSORLESS VACUUM WORLDTHE DETERMINISTIC SENSORLESS VACUUM WORLD

16

PARTIAL OBSERVATIONS: STATE TRANSITIONSPARTIAL OBSERVATIONS: STATE TRANSITIONS
With partial observations, we can think of belief state transitions in three stages:

Prediction, the same as for sensorless problems:
 for each

Observation prediction, determines the percepts that can be observed:
 for each

Update, filters the predicted states according to the percepts:
 for each such that

Belief state transitions:

 for each
where

= �������(b, a) = {������(s, a)b′ s ∈ b}

����������������() = {�������(s)b′ s ∈ }b′

������(, o) = {sb′ s ∈ b′ o = �������(s)}

�������(b, a) = {������(, o)b′ o ∈ ����������������()}b′

= �������(b, a)b′

17

TRANSITIONS IN PARTIALLY OBSERVABLE VACUUM WORLDSTRANSITIONS IN PARTIALLY OBSERVABLE VACUUM WORLDS
The percepts return the current position and the dirtyness of that square.

The deterministic world:
Right always succeeds.

The slippery world:
Right sometimes fails.

18

EXAMPLE: ROBOT LOCALISATIONEXAMPLE: ROBOT LOCALISATION
The percepts return whether there is a wall in each of the directions.

Possible initial positions of the robot, a�er E1 = North, South, West.

A�er moving right and observing E2 = North, South,
there’s only one possible position le�.

19

ADVERSARIAL SEARCHADVERSARIAL SEARCH
TYPES OF GAMES (R&N 5.1)TYPES OF GAMES (R&N 5.1)

MINIMAX SEARCH (R&N 5.2–5.3)MINIMAX SEARCH (R&N 5.2–5.3)

IMPERFECT DECISIONS (R&N 5.4–5.4.2)IMPERFECT DECISIONS (R&N 5.4–5.4.2)

STOCHASTIC GAMES (R&N 5.5)STOCHASTIC GAMES (R&N 5.5)

20

TYPES OF GAMES (R&N 5.1)TYPES OF GAMES (R&N 5.1)
cooperative, competetive, zero-sum games
game trees, ply/plies, utility functions

21

MULTIPLE AGENTSMULTIPLE AGENTS

Let’s consider problems with multiple agents, where:

the agents select actions autonomously

each agent has its own information state
they can have different information (even conflicting)

the outcome depends on the actions of all agents

each agent has its own utility function (that depends on the total outcome)

22

TYPES OF AGENTSTYPES OF AGENTS

There are two extremes of multiagent systems:

Cooperative: The agents share the same utility function
Example: Automatic trucks in a warehouse

Competetive: When one agent wins all other agents lose
A common special case is when for any outcome .
This is called a zero-sum game.
Example: Most board games

Many multiagent systems are between these two extremes.

Example: Long-distance bike races are usually both cooperative
(bikers form clusters where they take turns in leading a group),
and competetive (only one of them can win in the end).

(o) = 0∑
a
ua o

23

GAMES AS SEARCH PROBLEMSGAMES AS SEARCH PROBLEMS

The main difference to chapters 3–4:
now we have more than one agent that have different goals.

All possible game sequences are represented in a game tree.

The nodes are states of the game, e.g. board positions in chess.

Initial state (root) and terminal nodes (leaves).

States are connected if there is a legal move/ply.
(a ply is a move by one player, i.e., one layer in the game tree)

Utility function (payoff function). Terminal nodes have utility values
 (player 1 wins), (player 2 wins) and (draw).+x −x 0

24

TYPES OF GAMES (AGAIN)TYPES OF GAMES (AGAIN)

25

PERFECT INFORMATION GAMES: ZERO-SUM GAMESPERFECT INFORMATION GAMES: ZERO-SUM GAMES

Perfect information games are solvable in a manner similar to
fully observable single-agent systems, e.g., using forward search.

If two agents compete, so that a positive reward for one is a negative reward
for the other agent, we have a two-agent zero-sum game.

The value of a game zero-sum game can be characterised by a single number that
one agent is trying to maximise and the other agent is trying to minimise.

This leads to a minimax strategy:

A node is either a MAX node (if it is controlled by the maximising agent),
or is a MIN node (if it is controlled by the minimising agent).

26

MINIMAX SEARCH (R&N 5.2–5.3)MINIMAX SEARCH (R&N 5.2–5.3)
Minimax algorithm
α-β pruning

27

MINIMAX SEARCH FOR ZERO-SUM GAMESMINIMAX SEARCH FOR ZERO-SUM GAMES
Given two players called MAX and MIN:

MAX wants to maximise the utility value,
MIN wants to minimise the same value.

 MAX should choose the alternative that maximises, assuming MIN minimises.

Minimax gives perfect play for deterministic, perfect-information games:

function Minimax(state):

if TerminalTest(state) then return Utility(state)
A := Actions(state)
if state is a MAX node then return Minimax(Result(state, a))
if state is a MIN node then return Minimax(Result(state, a))

⇒

maxa∈A

mina∈A

28

MINIMAX SEARCH: TIC-TAC-TOEMINIMAX SEARCH: TIC-TAC-TOE

29

MINIMAX EXAMPLEMINIMAX EXAMPLE
The Minimax algorithm gives perfect play for deterministic, perfect-information games.

30

CAN MINIMAX BE WRONG?CAN MINIMAX BE WRONG?
Minimax gives perfect play, but is that always the best strategy?

Perfect play assumes that the opponent is also a perfect player!

31

3-PLAYER MINIMAX3-PLAYER MINIMAX
(will not be in the written examination)

Minimax can also be used on multiplayer games

32

 PRUNING PRUNING

Minimax(root) =

 =

 = where

 =
I.e., we don’t need to know the values of and !

αα−−ββ

max(min(3, 12, 8), min(2, x, y), min(14, 5, 2))

max(3, min(2, x, y), 2)

max(3, z, 2) z = min(2, x, y) ≤ 2

3

x y

33

 PRUNING, GENERAL IDEA PRUNING, GENERAL IDEA

The general idea of α-β pruning is this:
 • if is better than for Player,
 we don’t want to pursue
 • so, once we know enough about
 we can prune it
 • sometimes it’s enough to examine
 just one of ’s descendants

α-β pruning keeps track of the possible
range of values for every node it visits;

the parent range is updated when the child has been visited.

αα−−ββ

m n

n

n

n

34

MINIMAX EXAMPLE, WITH MINIMAX EXAMPLE, WITH PRUNING PRUNINGαα−−ββ

35

THE THE ALGORITHM ALGORITHM

function AlphaBetaSearch(state):
v := MaxValue(state, ,))
return the action in Actions(state) that has value v

function MaxValue(state, α, β):

if TerminalTest(state) then return Utility(state)
v :=
for each action in Actions(state):

v := max(v, MinValue(Result(state, action), α, β))
if v ≥ β then return v
α := max(α, v)

return v

function MinValue(state, α, β):

same as MaxValue but reverse the roles of α/β and min/max and

αα−−ββ

−∞ +∞

−∞

−∞/+∞

36

HOW EFFICIENT IS HOW EFFICIENT IS PRUNING? PRUNING?

The amount of pruning provided by the α-β algorithm depends on the ordering of
the children of each node.

It works best if a highest-valued child of a MAX node is selected first and
if a lowest-valued child of a MIN node is selected first.

In real games, much of the effort is made to optimise the search order.

With a “perfect ordering”, the time complexity becomes

this doubles the solvable search depth
however, (for chess) or (for go) is still quite large…

αα−−ββ

O()bm/2

3580/2 250160/2

37

MINIMAX AND REAL GAMESMINIMAX AND REAL GAMES

Most real games are too big to carry out minimax search, even with α-β pruning.

For these games, instead of stopping at leaf nodes,
we have to use a cutoff test to decide when to stop.

The value returned at the node where the algorithm stops
is an estimate of the value for this node.

The function used to estimate the value is an evaluation function.

Much work goes into finding good evaluation functions.

There is a trade-off between the amount of computation required
to compute the evaluation function and the size of the search space
that can be explored in any given time.

38

IMPERFECT DECISIONS (R&N 5.4–5.4.2)IMPERFECT DECISIONS (R&N 5.4–5.4.2)
H-minimax algorithm
evaluation function, cutoff test
features, weighted linear function
quiescence search, horizon effect

39

H-MINIMAX ALGORITHMH-MINIMAX ALGORITHM
The Heuristic Minimax algorithm is similar to normal Minimax

it replaces TerminalTest with CutoffTest, and Utility with Eval
the cutoff test needs to know the current search depth

function H-Minimax(state, depth):

if CutoffTest(state, depth) then return Eval(state)
A := Actions(state)
if state is a MAX node then return H-Minimax(Result(state, a), depth+1)
if state is a MIN node then return H-Minimax(Result(state, a), depth+1)

maxa∈A

mina∈A

40

CHESS POSITIONS: HOW TO EVALUATECHESS POSITIONS: HOW TO EVALUATE

41

WEIGHTED LINEAR EVALUATION FUNCTIONSWEIGHTED LINEAR EVALUATION FUNCTIONS

A very common evaluation function is to use a weighted sum of features:

This relies on a strong assumption: all features are independent of each other
which is usually not true, so the best programs for chess
(and other games) also use nonlinear feature combinations

The weights can be calculated using machine learning algorithms,
but a human still has to come up with the features.

using recent advances in deep machine learning,
the computer can learn the features too

Eval(s) = (s) + (s) +⋯ + (s) = (s)w1 f1 w2 f2 wn fn ∑
i=1

n

wifi

42

EVALUATION FUNCTIONSEVALUATION FUNCTIONS

A naive weighted sum of features will not see the difference between these two states.

43

PROBLEMS WITH CUTOFF TESTSPROBLEMS WITH CUTOFF TESTS
Too simplistic cutoff tests and evaluation functions can be problematic:

e.g., if the cutoff is only based on the current depth
then it might cut off the search in unfortunate positions
(such as (b) on the previous slide)

We want more sophisticated cutoff tests:

only cut off search in quiescent positions
i.e., in positions that are “stable”, unlikely to exhibit wild swings in value
non-quiescent positions should be expanded further

Another problem is the horizon effect:

if a bad position is unavoidable (e.g., loss of a piece), but the system can
delay it from happening, it might push the bad position “over the horizon”
in the end, the resulting delayed position might be even worse

44

DETERMINISTIC GAMES IN PRACTICEDETERMINISTIC GAMES IN PRACTICE
Chess:

IBM DeepBlue beats world champion Garry Kasparov, 1997.
Google AlphaZero beats best chess program Stockfish, December 2017.

Checkers/Othello/Reversi:

Logistello beats the world champion in Othello/Reversi, 1997.
Chinook plays checkers perfectly, 2007. It uses an endgame database
defining perfect play for all 8-piece positions on the board,
(a total of 443,748,401,247 positions).

Go:

First Go programs to reach low dan-levels, 2009.
Google AlphaGo beats the world’s best Go player, Ke Jie, May 2017.
Google AlphaZero beats AlphaGo, December 2017.

AlphaZero learns board game strategies by playing itself, it does not use
a database of previous matches, opening books or endgame tables.

45

STOCHASTIC GAMES (R&N 5.5)STOCHASTIC GAMES (R&N 5.5)
Note: this section will be presented Tuesday 6th February!

46

