
DIT411/TIN175, Artificial Intelligence Chapters 3, 4, 5, 7: Repetition

CHAPTERS 3, 4, 5, 7: REPETITIONCHAPTERS 3, 4, 5, 7: REPETITION
DIT411/TIN175, Artificial Intelligence

Peter Ljunglöf

9 February, 2018

1

TABLE OF CONTENTSTABLE OF CONTENTS
Search (R&N 3.1–3.6, 4.1, 4.3–4.4)

Uninformed search
Cost-based search
Heuristics
Non-classical search

Adversarial search (R&N 5.1–5.5)
Types of games
Minimax search
Imperfect decisions
Stochastic games

Constraint satisfaction problems (R&N 4.1, 7.1–7.5)
CSP as a search problem
Improving backtracking efficiency
Constraint propagation
Problem structure
Local search for CSP

2

SEARCH (R&N 3.1–3.6, 4.1, 4.3–4.4)SEARCH (R&N 3.1–3.6, 4.1, 4.3–4.4)
UNINFORMED SEARCHUNINFORMED SEARCH

COST-BASED SEARCHCOST-BASED SEARCH

HEURISTICSHEURISTICS

NON-CLASSICAL SEARCHNON-CLASSICAL SEARCH

3

DIRECTED GRAPHSDIRECTED GRAPHS

A graph consists of a set of nodes and a set of ordered pairs of nodes,
called arcs or edges.

Node is a neighbor of if there is an arc from to .
That is, if .

A path is a sequence of nodes such that .

The length of path is .

A solution is a path from a start node to a goal node,
given a set of start nodes and goal nodes.

(Russel & Norvig sometimes call the graph nodes states).

N A

n2 n1 n1 n2
(,) ∈ An1 n2

(, ,… ,)n0 n1 nk (,) ∈ Ani−1 ni

(, ,… ,)n0 n1 nk k

4

HOW DO WE SEARCH IN A GRAPH?HOW DO WE SEARCH IN A GRAPH?

A generic search algorithm:

Given a graph, start nodes, and a goal description, incrementally
explore paths from the start nodes.

Maintain a frontier of nodes that are to be explored.

As search proceeds, the frontier expands into the unexplored nodes
until a goal node is encountered.

The way in which the frontier is expanded defines the search strategy.

5

ILLUSTRATION OF SEARCHING IN A GRAPHILLUSTRATION OF SEARCHING IN A GRAPH

6

THE GENERIC TREE SEARCH ALGORITHMTHE GENERIC TREE SEARCH ALGORITHM
Tree search: Don’t check if nodes are visited multiple times

function Search(graph, initialState, goalState):

initialise frontier using the initialState

while frontier is not empty:

select and remove node from frontier
if node.state is a goalState then return node

for each child in ExpandChildNodes(node, graph):

add child to frontier
return failure

7

USING TREE SEARCH ON A GRAPHUSING TREE SEARCH ON A GRAPH

explored nodes might be revisited
frontier nodes might be duplicated

8

TURNING TREE SEARCH INTO GRAPH SEARCHTURNING TREE SEARCH INTO GRAPH SEARCH
Graph search: Keep track of visited nodes

function Search(graph, initialState, goalState):

initialise frontier using the initialState
initialise exploredSet to the empty set
while frontier is not empty:

select and remove node from frontier
if node.state is a goalState then return node
add node to exploredSet
for each child in ExpandChildNodes(node, graph):

add child to frontier if child is not in frontier or exploredSet
return failure

9

TREE SEARCH VS. GRAPH SEARCHTREE SEARCH VS. GRAPH SEARCH

Tree search

Pro: uses less memory
Con: might visit the same node several times

Graph search

Pro: only visits nodes at most once
Con: uses more memory

10

DEPTH-FIRST AND BREADTH-FIRST SEARCHDEPTH-FIRST AND BREADTH-FIRST SEARCH
THESE ARE THE TWO BASIC SEARCH ALGORITHMSTHESE ARE THE TWO BASIC SEARCH ALGORITHMS

Depth-first search (DFS)
implement the frontier as a Stack
space complexity:
incomplete: might fall into an infinite loop, doesn’t return optimal solution

Breadth-first search (BFS)

implement the frontier as a Queue
space complexity:
complete: always finds a solution, if there is one
(when edge costs are constant, BFS is also optimal)

O(bm)

O()bm

11

ITERATIVE DEEPENINGITERATIVE DEEPENING

Problems with BFS and DFS:

BFS is guaranteed to halt but uses exponential space.
DFS uses linear space, but is not guaranteed to halt.

Idea: take the best from BFS and DFS — recompute elements of the frontier
rather than saving them.

Look for paths of depth 0, then 1, then 2, then 3, etc.
Depth-bounded DFS can do this in linear space.

Iterative deepening search calls depth-bounded DFS with increasing bounds:

If a path cannot be found at depth-bound, look for a path at depth-bound + 1.
Increase depth-bound when the search fails unnaturally
(i.e., if depth-bound was reached).

12

ITERATIVE DEEPENING COMPLEXITYITERATIVE DEEPENING COMPLEXITY
Complexity with solution at depth and branching factor :

level # nodes BFS node visits ID node visits

total

Numerical comparison for and :

BFS = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
IDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Note: IDS recalculates shallow nodes several times,
but this doesn’t have a big effect compared to BFS!

k b

1

2

3

⋮

k

b

b
2

b
3

⋮

b
k

1 ⋅ b
1

1 ⋅ b
2

1 ⋅ b
3

⋮

1 ⋅ b
k

k ⋅ b
1

(k−1) ⋅ b2

(k−2) ⋅ b3

⋮

1 ⋅ b
k

≥ b
k

≤ b
k()b

b−1

2

k = 5 b = 10

13

BIDIRECTIONAL SEARCHBIDIRECTIONAL SEARCH
(will not be in the written examination, but could be used in Shrdlite)

Idea: search backward from the goal and forward from the start simultaneously.

This can result in an exponential saving, because .

The main problem is making sure the frontiers meet.

One possible implementation:

Use BFS to gradually search backwards from the goal,
building a set of locations that will lead to the goal.

this can be done using dynamic programming

Interleave this with forward heuristic search (e.g., A*)
that tries to find a path to these interesting locations.

2 ≪bk/2 bk

14

COST-BASED SEARCHCOST-BASED SEARCH
THE FRONTIER IS A PRIORITY QUEUE, ORDERED BY THE FRONTIER IS A PRIORITY QUEUE, ORDERED BY

Uniform-cost search (this is not a heuristic algorithm)
expand the node with the lowest path cost

complete and optimal

Greedy best-first search

expand the node which is closest to the goal (according to some heuristics)

incomplete: might fall into an infinite loop, doesn’t return optimal solution

A* search

expand the node which has the lowest estimated cost from start to goal
 = estimated cost of the cheapest solution through

complete and optimal (if is admissible/consistent)

ff ((nn))

f (n) = g(n)

f (n) = h(n)

f (n) = g(n) + h(n) n

h(n)

15

A* TREE SEARCH IS OPTIMAL!A* TREE SEARCH IS OPTIMAL!

A* always finds an optimal solution first, provided that:

the branching factor is finite,

arc costs are bounded above zero
(i.e., there is some such that all
of the arc costs are greater than), and

 is admissible

i.e., is nonnegative and an underestimate of
the cost of the shortest path from to a goal node.

These requirements ensure that keeps increasing.

ϵ > 0

ϵ

h(n)

h(n)

n

f

16

TURNING TREE SEARCH INTO GRAPH SEARCHTURNING TREE SEARCH INTO GRAPH SEARCH
Tree search: Don’t check if nodes are visited multiple times
Graph search: Keep track of visited nodes

function Search(graph, initialState, goalState):

initialise frontier using the initialState
initialise exploredSet to the empty set
while frontier is not empty:

select and remove node from frontier
if node.state is a goalState then return node
add node to exploredSet
for each child in ExpandChildNodes(node, graph):

add child to frontier if child is not in frontier or exploredSet
return failure

17

GRAPH-SEARCH = MULTIPLE-PATH PRUNINGGRAPH-SEARCH = MULTIPLE-PATH PRUNING

Graph search keeps track of visited nodes, so we don’t visit the same node twice.

Suppose that the first time we visit a node is not via the most optimal path

 then graph search will return a suboptimal path

Under which circumstances can we guarantee that A* graph search is optimal?

⇒

18

WHEN IS A* GRAPH SEARCH OPTIMAL?WHEN IS A* GRAPH SEARCH OPTIMAL?
If for every arc ,
then A* graph search is optimal:

Lemma: the values along any path are nondecreasing:
Proof: , therefore:

therefore: , i.e., is nondecreasing

Theorem: whenever A* expands a node , the optimal path to has been
found

Proof: Assume this is not true;
then there must be some still
on the frontier, which is on the
optimal path to ;
but ;
and then must already have
been expanded contradiction!

|h() − h(n)| ≤ cost(, n)n′ n′ (, n)n′

f [… , , n,…]n′

g(n) = g() + cost(, n)n′ n′

f (n) = g(n) + h(n) = g() + cost(, n) + h(n) ≥ g() + h()n′ n′ n′ n′

f (n) ≥ f ()n′ f

n n

n′

n

f () ≤ f (n)n′

n′

⟹

19

STATE-SPACE CONTOURSSTATE-SPACE CONTOURS

The values in A* are nondecreasing, therefore:

first A* expands all nodes with

then A* expands all nodes with

finally A* expands all nodes with

A* will not expand any nodes with ,
where is the cost of an optimal solution.

f

f (n) < C

f (n) = C

f (n) > C

f (n) > C∗
C∗

20

SUMMARY OF OPTIMALITY OF A*SUMMARY OF OPTIMALITY OF A*

A* tree search is optimal if:

the heuristic function is admissible
i.e., is nonnegative and an underestimate of the actual cost
i.e., , for all nodes

A* graph search is optimal if:

the heuristic function is consistent (or monotone)
i.e., , for all arcs

h(n)

h(n)

h(n) ≤ cost(n, goal) n

h(n)

|h(m) − h(n)| ≤ cost(m, n) (m, n)

21

SUMMARY OF TREE SEARCH STRATEGIESSUMMARY OF TREE SEARCH STRATEGIES
Search
strategy

Frontier
selection

Halts if
solution?

Halts if no
solution?

Space
usage

Depth first Last node added No No Linear
Breadth first First node added Yes No Exp

Greedy best first Minimal No No Exp

Uniform cost Minimal Optimal No Exp

A* Optimal* No Exp

*Provided that is admissible.

Halts if: If there is a path to a goal, it can find one, even on infinite graphs.
Halts if no: Even if there is no solution, it will halt on a finite graph (with cycles).
Space: Space complexity as a function of the length of the current path.

h(n)

g(n)

f (n) = g(n) + h(n)

h(n)

22

SUMMARY OF SUMMARY OF GRAPH SEARCHGRAPH SEARCH STRATEGIES STRATEGIES
Search
strategy

Frontier
selection

Halts if
solution?

Halts if no
solution?

Space
usage

Depth first Last node added (Yes)** Yes Exp
Breadth first First node added Yes Yes Exp

Greedy best first Minimal (Yes)** Yes Exp

Uniform cost Minimal Optimal Yes Exp

A* Optimal* Yes Exp

**On finite graphs with cycles, not infinite graphs.
*Provided that is consistent.

Halts if: If there is a path to a goal, it can find one, even on infinite graphs.
Halts if no: Even if there is no solution, it will halt on a finite graph (with cycles).
Space: Space complexity as a function of the length of the current path.

h(n)

g(n)

f (n) = g(n) + h(n)

h(n)

23

HEURISTICSHEURISTICS
RECAPITULATION: THE 8 PUZZLERECAPITULATION: THE 8 PUZZLE

 = number of misplaced tiles
 = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

 = 8
 = 3+1+2+2+2+3+3+2 = 18

(n)h1
(n)h2

(StartState)h1
(StartState)h2

24

DOMINATING HEURISTICSDOMINATING HEURISTICS

If (admissible) for all ,
then dominates and is better for search.

Typical search costs (for 8-puzzle):

depth = 14 DFS ≈ 3,000,000 nodes
A*() = 539 nodes
A*() = 113 nodes

depth = 24 DFS ≈ 54,000,000,000 nodes
A*() = 39,135 nodes
A*() = 1,641 nodes

Given any admissible heuristics , , the maximum heuristics
is also admissible and dominates both:

(n) ≥ (n)h2 h1 n

h2 h1

h1
h2

h1
h2

ha hb h(n)

h(n) = max((n), (n))ha hb

25

HEURISTICS FROM A RELAXED PROBLEMHEURISTICS FROM A RELAXED PROBLEM

Admissible heuristics can be derived from the exact solution cost of
a relaxed problem:

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is
never greater than the optimal solution cost of the real problem

(n)h1

(n)h2

26

NON-ADMISSIBLE (NON-CONSISTENT) A* SEARCHNON-ADMISSIBLE (NON-CONSISTENT) A* SEARCH

A* search with admissible (consistent) heuristics is optimal

But what happens if the heuristics is non-admissible?

i.e., what if , for some ?
the solution is not guaranteed to be optimal…
…but it will find some solution!

Why would we want to use a non-admissible heuristics?

sometimes it’s easier to come up with a heuristics that is almost admissible
and, o�en, the search terminates faster!

* for graph search, , for some

h(n) > c(n, goal) n

|h(m) − h(n)| > cost(m, n) (m, n)

27

NON-CLASSICAL SEARCHNON-CLASSICAL SEARCH
A problem is nondeterministic if there are several possible outcomes of an action

deterministic — nondeterministic (chance)

It is partially observable if the agent cannot tell exactly which state it is in

fully observable (perfect info.) — partially observable (imperfect info.)

A problem can be either nondeterministic, or partially observable, or both:

28

NONDETERMINISTIC SEARCHNONDETERMINISTIC SEARCH
We need a more general result function:

instead of returning a single state, it returns a set of possible outcome states
e.g., and

We also need to generalise the notion of a solution:

instead of a single sequence (path) from the start to the goal,
we need a strategy (or a contingency plan)
i.e., we need if-then-else constructs
this is a possible solution from state 1:

[Suck, if State=5 then [Right, Suck] else []]

�������(����, 1) = {5, 7} �������(����, 5) = {1, 5}

29

HOW TO FIND CONTINGENCY PLANSHOW TO FIND CONTINGENCY PLANS
(will not be in the written examination)

We need a new kind of nodes in the search tree:
and nodes:
these are used whenever an action is nondeterministic
normal nodes are called or nodes:
they are used when we have several possible actions in a state

A solution for an and-or search problem is a subtree that:

has a goal node at every leaf
specifies exactly one action at each of its or node
includes every branch at each of its and node

30

A SOLUTION TO THE ERRATIC VACUUM CLEANERA SOLUTION TO THE ERRATIC VACUUM CLEANER
(will not be in the written examination)

The solution subtree is shown in bold, and corresponds to the plan:
[Suck, if State=5 then [Right, Suck] else []]

31

PARTIAL OBSERVATIONS: BELIEF STATESPARTIAL OBSERVATIONS: BELIEF STATES
Instead of searching in a graph of states, we use belief states

A belief state is a set of states

In a sensor-less (or conformant) problem, the agent has no information at all

The initial belief state is the set of all problem states
e.g., for the vacuum world the initial state is {1,2,3,4,5,6,7,8}

The goal test has to check that all members in the belief state is a goal

e.g., for the vacuum world, the following are goal states: {7}, {8}, and {7,8}

The result of performing an action is the union of all possible results

i.e., for each
if the problem is also nondeterministic:

 for each

�������(b, a) = {������(s, a) s ∈ b}

�������(b, a) = ⋃{�������(s, a) s ∈ b}

32

PREDICTING BELIEF STATES IN THE VACUUM WORLDPREDICTING BELIEF STATES IN THE VACUUM WORLD

(a) Predicting the next belief state for the sensorless vacuum world
with a deterministic action, Right.

(b) Prediction for the same belief state and action in the nondeterministic
slippery version of the sensorless vacuum world.

33

ADVERSARIAL SEARCH (R&N 5.1–5.5)ADVERSARIAL SEARCH (R&N 5.1–5.5)
TYPES OF GAMESTYPES OF GAMES

MINIMAX SEARCHMINIMAX SEARCH

IMPERFECT DECISIONSIMPERFECT DECISIONS

STOCHASTIC GAMESSTOCHASTIC GAMES

34

GAMES AS SEARCH PROBLEMSGAMES AS SEARCH PROBLEMS

The main difference to chapters 3–4:
now we have more than one agent that have different goals.

All possible game sequences are represented in a game tree.

The nodes are states of the game, e.g. board positions in chess.

Initial state (root) and terminal nodes (leaves).

States are connected if there is a legal move/ply.
(a ply is a move by one player, i.e., one layer in the game tree)

Utility function (payoff function). Terminal nodes have utility values
 (player 1 wins), (player 2 wins) and (draw).+x −x 0

35

PERFECT INFORMATION GAMES: ZERO-SUM GAMESPERFECT INFORMATION GAMES: ZERO-SUM GAMES

Perfect information games are solvable in a manner similar to
fully observable single-agent systems, e.g., using forward search.

If two agents compete, so that a positive reward for one is a negative reward
for the other agent, we have a two-agent zero-sum game.

The value of a game zero-sum game can be characterized by a single number that
one agent is trying to maximize and the other agent is trying to minimize.

This leads to a minimax strategy:

A node is either a MAX node (if it is controlled by the maximising agent),
or is a MIN node (if it is controlled by the minimising agent).

36

MINIMAX SEARCHMINIMAX SEARCH
The Minimax algorithm gives perfect play for deterministic, perfect-information games.

37

 PRUNING PRUNING

Minimax(root) =

 =

 = where

 =
I.e., we don’t need to know the values of and !

αα−−ββ

max(min(3, 12, 8), min(2, x, y), min(14, 5, 2))

max(3, min(2, x, y), 2)

max(3, z, 2) z = min(2, x, y) ≤ 2

3

x y

38

MINIMAX EXAMPLE, WITH MINIMAX EXAMPLE, WITH PRUNING PRUNINGαα−−ββ

39

HOW EFFICIENT IS HOW EFFICIENT IS PRUNING? PRUNING?

The amount of pruning provided by the α-β algorithm depends on the ordering of
the children of each node.

It works best if a highest-valued child of a MAX node is selected first and
if a lowest-valued child of a MIN node is returned first.

In real games, much of the effort is made to optimise the search order.

With a “perfect ordering”, the time complexity becomes

this doubles the solvable search depth
however, (for chess) or (for go) is still quite large…

αα−−ββ

O()bm/2

3580/2 250160/2

40

MINIMAX AND REAL GAMESMINIMAX AND REAL GAMES

Most real games are too big to carry out minimax search, even with α-β pruning.

For these games, instead of stopping at leaf nodes,
we have to use a cutoff test to decide when to stop.

The value returned at the node where the algorithm stops
is an estimate of the value for this node.

The function used to estimate the value is an evaluation function.

Much work goes into finding good evaluation functions.

There is a trade-off between the amount of computation required
to compute the evaluation function and the size of the search space
that can be explored in any given time.

41

IMPERFECT DECISIONSIMPERFECT DECISIONS
MINIMAX VS H-MINIMAXMINIMAX VS H-MINIMAX

function Minimax(state):
if TerminalTest(state) then return Utility(state)
A := Actions(state)
if state is a MAX node then return Minimax(Result(state, a))
if state is a MIN node then return Minimax(Result(state, a))

The Heuristic Minimax algorithm is similar to normal Minimax

it replaces TerminalTest and Utility with CutoffTest and Eval

function H-Minimax(state, depth):
if CutoffTest(state, depth) then return Eval(state)
A := Actions(state)
if state is a MAX node then return H-Minimax(Result(state, a), depth+1)
if state is a MIN node then return H-Minimax(Result(state, a), depth+1)

maxa∈A
mina∈A

maxa∈A
mina∈A

42

EVALUATION FUNCTIONSEVALUATION FUNCTIONS

A naive evaluation function will not see the difference between these two states.

Eval(s) = (s) + (s) +⋯ + (s) = (s)w1 f1 w2 f2 wn fn ∑
i=1

n

wifi

43

PROBLEMS WITH CUTOFF TESTSPROBLEMS WITH CUTOFF TESTS
Too simplistic cutoff tests and evaluation functions can be problematic:

e.g., if the cutoff is only based on the current depth
then it might cut off the search in unfortunate positions
(such as (b) on the previous slide)

We want more sophisticated cutoff tests:

only cut off search in quiescent positions
i.e., in positions that are “stable”, unlikely to exhibit wild swings in value
non-quiescent positions should be expanded further

44

STOCHASTIC GAMESSTOCHASTIC GAMES
EXAMPLE: BACKGAMMONEXAMPLE: BACKGAMMON

45

STOCHASTIC GAMES IN GENERALSTOCHASTIC GAMES IN GENERAL
In stochastic games, chance is introduced by dice, card-shuffling, etc.

We introduce chance nodes to the game tree.
We can’t calculate a definite minimax value,
instead we calculate the expected value of a position.
The expected value is the average of all possible outcomes.

A very simple example with coin-flipping and arbitrary values:

46

ALGORITHM FOR STOCHASTIC GAMESALGORITHM FOR STOCHASTIC GAMES
The ExpectiMinimax algorithm gives perfect play;
it’s just like Minimax, except we must also handle chance nodes:

function ExpectiMinimax(state):

if TerminalTest(state) then return Utility(state)
A := Actions(state)
if state is a MAX node then return ExpectiMinimax(Result(state, a))
if state is a MAX node then return ExpectiMinimax(Result(state, a))
if state is a chance node then return ·ExpectiMinimax(Result(state, a))

where is the probability that action a occurs.

maxa∈A
mina∈A

P(a)∑
a∈A

P(a)

47

CONSTRAINT SATISFACTION PROBLEMSCONSTRAINT SATISFACTION PROBLEMS
(R&N 4.1, 7.1–7.5)(R&N 4.1, 7.1–7.5)

CSP AS A SEARCH PROBLEMCSP AS A SEARCH PROBLEM

IMPROVING BACKTRACKING EFFICIENCYIMPROVING BACKTRACKING EFFICIENCY

CONSTRAINT PROPAGATIONCONSTRAINT PROPAGATION

PROBLEM STRUCTUREPROBLEM STRUCTURE

LOCAL SEARCH FOR CSPLOCAL SEARCH FOR CSP

48

CSP: CONSTRAINT SATISFACTION PROBLEMSCSP: CONSTRAINT SATISFACTION PROBLEMS
CSP is a specific kind of search problem:

the state is defined by variables , each taking values from the domain
the goal test is a set of constraints:

each constraint specifies allowed values for a subset of variables
all constraints must be satisfied

Differences to general search problems:

the path to a goal isn’t important, only the solution is.
there are no predefined starting state
o�en these problems are huge, with thousands of variables,
so systematically searching the space is infeasible

Xi Di

49

EXAMPLE: MAP COLOURING (BINARY CSP)EXAMPLE: MAP COLOURING (BINARY CSP)

Variables: WA, NT, Q, NSW, V, SA, T

Domains: = {red, green, blue}
Constraints: SA≠WA, SA≠NT, SA≠Q, SA≠NSW, SA≠V,

WA≠NT, NT≠Q, Q≠NSW, NSW≠V
Constraint graph: Every variable is a node, every binary constraint is an arc.

Di

50

EXAMPLE: CRYPTARITHMETIC PUZZLE (HIGHER-ORDER CSP)EXAMPLE: CRYPTARITHMETIC PUZZLE (HIGHER-ORDER CSP)

Variables: F, T, U, W, R, O,

Domains: = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints: Alldiff(F,T,U,W,R,O), O+O=R+10· , etc.
Constraint graph: This is not a binary CSP!

The graph is a constraint hypergraph.

, ,X1 X2 X3

Di

X1

51

ALGORITHM FOR BACKTRACKING SEARCHALGORITHM FOR BACKTRACKING SEARCH
At each depth level, decide on one single variable to assign:

this gives branching factor , so there are leaves
Depth-first search with single-variable assignments is called backtracking search:

function BacktrackingSearch(csp):

return Backtrack(csp, { })

function Backtrack(csp, assignment):

if assignment is complete then return assignment
var := SelectUnassignedVariable(csp, assignment)
for each value in OrderDomainValues(csp, var, assignment):

if value is consistent with assignment:
inferences := Inference(csp, var, value)
if inferences ≠ failure:

result := Backtrack(csp, assignment {var=value} inferences)
if result ≠ failure then return result

return failure

b = d dn

∪ ∪

52

IMPROVING BACKTRACKING EFFICIENCYIMPROVING BACKTRACKING EFFICIENCY

The general-purpose algorithm gives rise to several questions:

Which variable should be assigned next?
SelectUnassignedVariable(csp, assignment)

In what order should its values be tried?
OrderDomainValues(csp, var, assignment)

What inferences should be performed at each step?
Inference(csp, var, value)

53

SELECTING UNASSIGNED VARIABLESSELECTING UNASSIGNED VARIABLES

Heuristics for selecting the next unassigned variable:

Minimum remaining values (MRV):
 choose the variable with the fewest legal values

Degree heuristic (if there are several MRV variables):
 choose the variable with most constraints on remaining variables

⟹

⟹

54

ORDERING DOMAIN VALUESORDERING DOMAIN VALUES

Heuristics for ordering the values of a selected variable:

Least constraining value:
 prefer the value that rules out the fewest choices

for the neighboring variables in the constraint graph
⟹

55

CONSTRAINT PROPAGATIONCONSTRAINT PROPAGATION
INFERENCE: ARC CONSISTENCY, AC-3INFERENCE: ARC CONSISTENCY, AC-3

Keep a set of arcs to be considered: pick one arc at the time and
make it consistent (i.e., make arc consistent to).

Start with the set of all arcs .

When an arc has been made arc consistent, does it ever need to be checked again?

An arc needs to be revisited if the domain of is revised.

function AC-3(inout csp):
initialise queue to all arcs in csp
while queue is not empty:

(X, Y) := RemoveOne(queue)
if Revise(csp, X, Y):

if then return failure
for each Z in X.neighbors–{Y} do add (Z, X) to queue

function Revise(inout csp, X, Y):

delete every x from such that there is no value y in satisfying the constraint
return true if was revised

(X, Y)

X Y

{(X, Y), (Y,X), (X, Z), (Z,X),…}

(Z,X) X

= ∅DX

DX DY CXY

DX

56

COMBINING BACKTRACKING WITH AC-3COMBINING BACKTRACKING WITH AC-3

What if some domains have more than one element a�er AC?

We can resort to backtracking search:

Select a variable and a value using some heuristics
(e.g., minimum-remaining-values, degree-heuristic, least-constraining-value)
Make the graph arc-consistent again
Backtrack and try new values/variables, if AC fails
Select a new variable/value, perform arc-consistency, etc.

Do we need to restart AC from scratch?

no, only some arcs risk becoming inconsistent a�er a new assignment
restart AC with the queue ,
i.e., only the arcs where are the neighbors of
this algorithm is called Maintaining Arc Consistency (MAC)

{(,X)|X → }Yi Yi

(,X)Yi Yi X

57

CONSISTENCY PROPERTIESCONSISTENCY PROPERTIES

There are several kinds of consistency properties and algorithms:

Node consistency: single variable, unary constraints (straightforward)

Arc consistency: pairs of variables, binary constraints (AC-3 algorithm)

Path consistency: triples of variables, binary constraints (PC-2 algorithm)

-consistency: variables, -ary constraints (algorithms exponential in)

Consistency for global constraints:
Special-purpose algorithms for different constraints, e.g.:

Alldiff() is inconsistent if
Atmost() is inconsistent if

k k k k

,… ,X1 Xm m > | ∪⋯ ∪ |D1 Dm

n, ,… ,X1 Xm n < min()∑
i

Di

58

PROBLEM STRUCTUREPROBLEM STRUCTURE
TREE-STRUCTURED CSPTREE-STRUCTURED CSP

(will not be in the written examination)

A constraint graph is a tree when any two variables are connected by only one path.
then any variable can act as root in the tree
tree-structured CSP can be solved in linear time, in the number of variables!

To solve a tree-structured CSP:

first pick a variable to be the root of the tree
then find a topological sort of the variables (with the root first)
finally, make each arc consistent, in reverse topological order

59

CONVERTING TO TREE-STRUCTURED CSPCONVERTING TO TREE-STRUCTURED CSP
(will not be in the written examination)

Most CSPs are not tree-structured, but sometimes we can reduce them to a tree
one approach is to assign values to some variables,
so that the remaining variables form a tree

If we assign a colour to South Australia, then the remaining variables form a tree

An alternative is to assign values to {NT,Q,V}: But this is worse than assigning
South Australia, because then we have to try 3×3×3 different assignments,
and for each of them solve the remaining tree-CSP

60

LOCAL SEARCH FOR CSPLOCAL SEARCH FOR CSP
Given an assignment of a value to each variable:

A conflict is an unsatisfied constraint.
The goal is an assignment with zero conflicts.
Heuristic function to be minimized: the number of conflicts.

this is the min-conflicts heuristics

function MinConflicts(csp, max_steps)
current := an initial complete assignment for csp
repeat max_steps times:

if current is a solution for csp then return current
var := a randomly chosen conflicted variable from csp
value := the value v for var that minimises Conflicts(var, v, current, csp)
current[var] = value

return failure

61

EXAMPLE: EXAMPLE: -QUEENS (REVISITED)-QUEENS (REVISITED)

Put queens on an board, in separate columns
Conflicts = unsatisfied constraints = n:o of threatened queens
Move a queen to reduce the number of conflicts

repeat until we cannot move any queen anymore
then we are at a local maximum — hopefully it is global too

nn

n n × n

62

EXAMPLE: TRAVELLING SALESPERSONEXAMPLE: TRAVELLING SALESPERSON

Start with any complete tour, and perform pairwise exchanges

Variants of this approach get within 1% of optimal
very quickly with thousands of cities

63

LOCAL SEARCHLOCAL SEARCH
Hill climbing search is also called gradient/steepest ascent/descent,

or greedy local search.

function HillClimbing(graph, initialState):
current := initialState
loop:

neighbor := a highest-valued successor of current
if neighbor.value ≤ current.value then return current
current := neighbor

64

PROBLEMS WITH HILL CLIMBINGPROBLEMS WITH HILL CLIMBING
Local maxima — Ridges — Plateaux

65

RANDOMIZED HILL CLIMBINGRANDOMIZED HILL CLIMBING

As well as upward steps we can allow for:

Random steps: (sometimes) move to a random neighbor.

Random restart: (sometimes) reassign random values to all variables.

Both variants can be combined!

66

1-DIMENSIONAL ILLUSTRATIVE EXAMPLE1-DIMENSIONAL ILLUSTRATIVE EXAMPLE

Two 1-dimensional search spaces; you can step right or le�:

Which method would most easily find the global maximum?
random steps or random restarts?

What if we have hundreds or thousands of dimensions?
…where different dimensions have different structure?

67

